LLM routers aim to balance quality and cost of generation by classifying queries and routing them to a cheaper or more expensive LLM depending on their complexity. Routers represent one type of what we call LLM control planes: systems that orchestrate use of one or more LLMs. In this paper, we investigate routers’ adversarial robustness.
We first define LLM control plane integrity, i.e., robustness of LLM orchestration to adversarial inputs, as a distinct problem in AI safety. Next, we demonstrate that an adversary can generate query-independent token sequences we call ``confounder gadgets’’ that, when added to any query, cause LLM routers to send the query to a strong LLM.
Our quantitative evaluation shows that this attack is successful both in white-box and black-box settings against a variety of open-source and commercial routers, and that confounding queries do not affect the quality of LLM responses. Finally, we demonstrate that gadgets can be effective while maintaining low perplexity, thus perplexity-based filtering is not an effective defense. We finish by investigating alternative defenses.